Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Front Plant Sci ; 15: 1323124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601312

RESUMO

Agronomy research traditionally relies on small, controlled trial plots, which may not accurately represent the complexities and variabilities found in larger, real-world settings. To address this gap, we introduce a Bayesian methodology for the analysis of yield monitor data, systematically collected across extensive agricultural landscapes during the 2020/21 and 2021/22 growing seasons. Utilizing advanced yield monitoring equipment, our method provides a detailed examination of the effects of green manure on wheat yields in a real-world context. The results from this comprehensive analysis reveal significant insights into the impact of green manure application on wheat production, demonstrating enhanced yield outcomes across varied landscapes. This evidence suggests that the Bayesian approach to analyzing yield monitor data can offer more precise and contextually relevant information than traditional experimental designs. This research underscores the value of integrating large-scale data analysis techniques in agronomy, moving beyond small-scale trials to offer a broader, more accurate perspective on agricultural practices. The adoption of such methodologies promises to refine farming strategies and policies, ultimately leading to more effective and sustainable agricultural outcomes. The inclusion of a Python script in the appendix illustrates our analytical process, providing a tangible resource for replicating and extending this research within the agronomic community.

2.
Sci Total Environ ; 926: 171827, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513860

RESUMO

The incorporation of green manure into cropping systems is a potential strategy for sequestering soil carbon (C), especially in saline-alkali soil. Yet, there are still unknown about the substitution impacts of green manure on nitrogen (N) fertilizer in wheat-green manure multiple cropping system. Herein, a five-year field experiment was performed to determine the impact of three levels of N fertilizer inputs [i.e., N fertilizer reduced by 0 % (100N), 10 % (90 N), and 20 % (80 N)] with aboveground biomass of green manure removal (0GM) and return (100GM) on soil organic carbon (SOC) storage and its primary determinants. The results demonstrated that no significant interaction on SOC storage was detected between green manure and N fertilizer management. 80 N enhanced SOC storage in bulk soil by 7.4 and 13.2 % in 0-20 cm soil depth relative to 100 N and 90 N (p < 0.05). Regardless of N fertilizer levels, compared with 100GM, 0GM increased SOC storage in bulk soil by 14.2-34.6 % in 0-40 cm soil depth (p < 0.05). This was explained by an increase in soil macro-aggregates (>2 and 0.25-2 mm) proportion contributing to SOC physical protection. Meanwhile, the improvement of SOC storage under 0GM was due to the decrease of soil C- and N-acquisition enzyme activities, and microbial resource limitation. Alternatively, the variation partitioning analyses (VPA) results further suggested that C- and N-acquisition enzyme activities, as well as microbial resource limitation were the most important factors for SOC storage. The findings highlighted those biological factors played a dominant role in SOC accumulation compared to physical factors. The aboveground biomass of green manure removal with N fertilizer reduced by 20 % is a viable option to enhance SOC storage in a wheat-green manure multiple cropping system.

3.
Environ Res ; 251(Pt 2): 118719, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490622

RESUMO

In southern China, winter green manure is widely used in rice cropping systems for improving grain yields and soil fertility. Cd pollution has recently been reported in some of these paddy fields. Research on the in-depth understanding of how green manuring affects Cd absorption in rice is limited. This study aimed to investigate the impacts of different green manures, including single plantation and mixed plantation on the absorption of Cd by rice and explore the underlying mechanisms. Pot experiments demonstrated that compared with winter fallow-rice, green manuring treatments considerably decreased rice Cd content, promoted the conversion of bioavailable Cd fraction into a more stable form, induced the formation of iron plaque, and increased the content of humic-like fraction (HF) in soil dissolved organic matter (DOM). Treatment with mixed plantation resulted in a greater decrease in rice Cd content and an increase in HF and iron plaque contents than single plantation. Hydroponic experiments confirmed that both iron plaque and green manure-derived DOM significantly reduced the Cd content in rice seedlings. In conclusion, green manure incorporation is an efficient measure for the safe utilization of Cd-contaminated soil, and mixed plantation of different green manures exerts stronger effects.

4.
Huan Jing Ke Xue ; 45(3): 1644-1654, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471876

RESUMO

In order to explore the effects of continuous annual crop rotation and fallow on aggregate stability and organic carbon content in red soil, the red soil in sloping farmland was taken as the research object, and the water-stable aggregates and organic carbon content were determined using the wet sieve method and potassium dichromate-concentrated sulfuric acid external heating method, respectively. The changes in soil aggregate stability and organic carbon content under the four treatments of maize-vetch-maize rotation (M-V-M), maize-pea-maize rotation (M-P-M), maize-fallow-maize (M-F-M), and annual fallow (F-F-F) from 2020 to 2022 and the relationships between them were analyzed. The results showed that in 2021 and 2022, the contents of > 2 mm aggregates treated with F-F-F, M-V-M, and M-P-M were significantly increased by 67.01%-100.92%, 29.71%-33.67%, and 29.68%-38.07%, respectively, compared with that treated with M-F-M. In 2021 and 2022, the stability parameters of F-F-F and M-V-M were significantly higher than those of M-F-M (P < 0.05). The content of > 2 mm aggregates, geometric mean diameter (GMD), and mean weight diameter (MWD) under the M-V-M treatment and R0.25 (> 0.25 mm aggregate contents), MWD and > 2 mm aggregate contents under the F-F-F treatment increased with the increase in fallow years, whereas the content of 1-2 mm and < 0.25 mm under the F-F-F treatment decreased with the increase in fallow years. Both green manure rotation and fallow treatment could increase the SOC content, and the SOC content of F-F-F and M-V-M treatment increased with the extension in age. Correlation analysis showed that SOC content was significantly positively correlated with R0.25 and GMD under all treatments. R0.25 and GMD under the F-F-F treatment and GMD and MWD under M-V-M were significantly positively correlated with SOC content. The results showed that continuous annual crop rotation and fallow was beneficial to improve the content of soil macro-aggregates, aggregate stability, and SOC content, which could provide theoretical basis for the implementation of reasonable continuous annual crop rotation and fallow patterns and soil erosion control in red soil areas of sloping farmland in southern China.

5.
Front Plant Sci ; 15: 1287379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384751

RESUMO

Trifolium repens L. (white clover) and Lolium perenne L. (ryegrass) are green manures widely used in conservation tillage systems worldwide. Eleusine indica L. (goosegrass) is a globally recognized noxious weed. Herein, we investigated the effects of aqueous extracts, decomposed liquids, and different straw-to-soil ratios on the germination and growth of goosegrass. The results showed that high concentrations (≥ 30%) of aqueous extracts or decomposed liquids of both green manures significantly inhibited germination-related parameters of goosegrass. The strongest inhibitory effect was observed for the 7-day decomposition treatment, and white clover's inhibitory effect was greater than ryegrass's. A pot experiment showed that non-photochemical quenching, catalase, and peroxidase activity levels of goosegrass leaves were significantly increased. At the same time, the net photosynthetic rate significantly decreased. Seedling growth was inhibited when the straw-to-soil ratio was greater than 3:100. The ryegrass treatments inhibited goosegrass seedlings more than the white clover treatments. This study demonstrated the inhibitory potential of white clover and ryegrass straw return on seed germination and seedling growth of goosegrass. The study has also helped to identify weed-resistant substances in these green manures so that their weed-control properties can be used more effectively and herbicide usage can be reduced.

6.
Sci China Life Sci ; 67(1): 149-160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897613

RESUMO

Alkaline soils pose an increasing problem for agriculture worldwide, but using stress-tolerant plants as green manure can improve marginal land. Here, we show that the legume Sesbania cannabina is very tolerant to alkaline conditions and, when used as a green manure, substantially improves alkaline soil. To understand genome evolution and the mechanisms of stress tolerance in this allotetraploid legume, we generated the first telomere-to-telomere genome assembly of S. cannabina spanning ∼2,087 Mb. The assembly included all centromeric regions, which contain centromeric satellite repeats, and complete chromosome ends with telomeric characteristics. Further genome analysis distinguished A and B subgenomes, which diverged approximately 7.9 million years ago. Comparative genomic analysis revealed that the chromosome homoeologs underwent large-scale inversion events (>10 Mb) and a significant, transposon-driven size expansion of the chromosome 5A homoeolog. We further identified four specific alkali-induced phosphate transporter genes in S. cannabina; these may function in alkali tolerance by relieving the deficiency in available phosphorus in alkaline soil. Our work highlights the significance of S. cannabina as a green tool to improve marginal lands and sheds light on subgenome evolution and adaptation to alkaline soils.


Assuntos
Fabaceae , Sesbania , Sesbania/genética , Esterco , Solo , Verduras/genética , Álcalis , Telômero/genética
7.
Plant Cell Environ ; 47(4): 1141-1159, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38098148

RESUMO

Intercropping is a widely recognised technique that contributes to agricultural sustainability. While intercropping leguminous green manure offers advantages for soil health and tea plants growth, the impact on the accumulation of theanine and soil nitrogen cycle are largely unknown. The levels of theanine, epigallocatechin gallate and soluble sugar in tea leaves increased by 52.87% and 40.98%, 22.80% and 6.17%, 22.22% and 29.04% in intercropping with soybean-Chinese milk vetch rotation and soybean alone, respectively. Additionally, intercropping significantly increased soil amino acidnitrogen content, enhanced extracellular enzyme activities, particularly ß-glucosidase and N-acetyl-glucosaminidase, as well as soil multifunctionality. Metagenomics analysis revealed that intercropping positively influenced the relative abundances of several potentially beneficial microorganisms, including Burkholderia, Mycolicibacterium and Paraburkholderia. Intercropping resulted in lower expression levels of nitrification genes, reducing soil mineral nitrogen loss and N2 O emissions. The expression of nrfA/H significantly increased in intercropping with soybean-Chinese milk vetch rotation. Structural equation model analysis demonstrated that the accumulation of theanine in tea leaves was directly influenced by the number of intercropping leguminous green manure species, soil ammonium nitrogen and amino acid nitrogen. In summary, the intercropping strategy, particularly intercropping with soybean-Chinese milk vetch rotation, could be a novel way for theanine accumulation.


Assuntos
Camellia sinensis , Fabaceae , Glutamatos , Fabaceae/metabolismo , Esterco , 60654 , Solo/química , Camellia sinensis/metabolismo , Soja , Chá , Nitrogênio/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38085473

RESUMO

Chemical fertilizer plays a vital role in increasing crop yield. However, the environmental risk and the adverse effect on soil caused by excessive chemical fertilizer can be mitigated by using organic fertilizer (green manure Chinese milk vetch) and straw returning. Therefore, this field study was conducted to determine the impact of winter crop incorporation with mineral fertilizers on methane (CH4) and nitrous oxide (N2O) emissions and the related genes (mcrA, pmoA, AOA, AOB, nirS, nirK, and nosZ) as well as the relationship among greenhouse gas (GHG) emissions, related genes, and soil properties. The study comprised winter crop incorporation with mineral fertilizer at the reduced rate of 0% (MRN1), 12.5% (MRN2), and 25% (MRN3). The results indicated that the early and late rice yield from treatments MRN2 and MRN3 increased by 25% and 4% compared with control CK (winter fallow, without green manure incorporation, and conventional nitrogen fertilizer amount). CH4 annual cumulative emission increased by 34% resulting from increased abundance of mcrA genes of methanogens. Furthermore, N2O annual cumulative emission increased due to soil microbial biomass nitrogen, AOA (amoA), AOB(amoA), nirK, and nirS abundance. The global warming potential (GWP) increased by 34%; however, there was no significant difference on the GHGI from all the treatments resulting from the increased yield. Therefore, winter crop incorporation with different rate of reduced mineral fertilizer significantly increased the crop yield and increased the SOC and MBC content. Meanwhile, winter crop incorporation increased CH4 and N2O annual cumulative emission mainly resulting from the increased abundance of mcrA genes of methanogens, soil microbial biomass nitrogen, AOA(amoA), AOB(amoA), nosZ, nirK, and nirS abundance.

9.
Front Microbiol ; 14: 1233465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675431

RESUMO

Legume crops in rice cultivation are typically rotated and incorporated into the soil as green manure to improve soil fertility. Biochar has recently been co-incorporated with green manure to simultaneously stimulate soil organic carbon (SOC) mineralization and increase carbon (C) sequestration. However, few studies examine the effects of the co-incorporation of biochar and green manure on C cycling and the underlying microbial mechanisms in paddy fields. In this study, the effects of the co-incorporation of green manure and biochar on C mineralization, dissolved organic carbon (DOC) characteristics, and microbial community structures were investigated. A pot study was conducted with three treatments: inorganic NPK (NPK), inorganic NPK + green manure (GM), and inorganic NPK + green manure + biochar (GMC). Organic amendments significantly increased cumulative C mineralization, with amounts in the order GMC (3,434 mg·kg-1) > GM (2,934 mg·kg-1) > NPK (2,592 mg·kg-1). Fertilizer treatments had similar effects on DOC concentrations, with amounts in the order GMC (279 mg·kg-1) > GM (255 mg·kg-1) > NPK (193 mg·kg-1). According to fluorescence spectra, the highest microbial humic acid-like fraction and biological index were also in GMC. Co-incorporation of green manure and biochar shifted the composition of bacterial and fungal communities but more importantly, increased fungal network complexity and decreased bacterial network complexity. The increase in fungal network complexity with the increase in DOC concentrations and microbially derived components was the dominant factor in promoting C mineralization. Overall, this study reveals the underlying biochemical mechanism, the interaction between DOC and fungal network of C cycling in paddy soil under the co-incorporation of green manure and biochar management, and provides fundamental knowledge for exploring effective approaches to improve soil fertility and health in the future.

10.
J Environ Manage ; 347: 119033, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757691

RESUMO

Milk vetch (Astragalus sinicus L.) is leguminous green manure (GM) which produces organic nitrogen (N) for subsequent crops and is widely planted and utilized to simultaneously reduce the use of synthetic N fertilizer and its environmental costs in rice systems. Determination of an optimal N application rate specific to the GM-rice system is challenging because of the large temporal and spatial variations in soil, climate, and field management conditions. To solve this problem, we developed a framework to explore the site-specific N application rate for the low-N footprint rice production system in southern China based on multi-site field experiments, farmer field survey, and process-based model (WHCNS_Rice, soil water heat carbon nitrogen simulator for rice). The results showed that a process-based model can explain >83.3% (p < 0.01) of the variation in rice yield, aboveground biomass, crop N uptake, and soil mineral N. Based on the scenario analysis of the tested WHCNS_Rice model, the simple regression equation was developed to implement site-specific N application rates that considered variations in GM biomass, soil, and climatic conditions. Simulation evaluation on nine provinces in southern China showed that the site-specific N application rate reduced regional synthetic N fertilizer input by 29.6 ± 17.8% and 65.3 ± 23.0% for single and early rice, respectively; decreased their total N footprints (NFs) by 23.4% and 49.3%, respectively; and without reduction in rice yield, compared with traditional farming N practices. The reduction in total NF was attributed to the reduced emissions from ammonia volatilization by 35.2%, N leaching by 28.4%, and N runoff by 32.7%. In this study, we suggested a low NF rice production system that can be obtained by combining GM with site-specific N application rate in southern China.


Assuntos
Oryza , Esterco/análise , Fertilizantes/análise , Produção Agrícola/métodos , Agricultura/métodos , Solo , China , Nitrogênio/análise
11.
Huan Jing Ke Xue ; 44(9): 5154-5163, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699833

RESUMO

To investigate the effects of crop rotation and fallow on the community composition of arbuscular mycorrhizal fungi (AMF) and the stability of soil aggregates, AMF community and aggregates were measured using Illumina MiSeq high-throughput sequencing and wet screening methods in red soil of sloping farmland. The AMF community and its relationship with soil factors and aggregate stability were studied under the four treatments of vetch rotation corn (V-C), pea rotation corn (P-C), winter fallow corn (F-C), and annual fallow (F-F). The results showed that the aggregate content of >2 mm, R0.25, and MWD in the F-F, V-C, and P-C treatments were significantly higher than those in F-C (P<0.05), and the aggregate content of <0.25 mm was significantly lower than that of F-C (P<0.05). The ACE, Chao1, and Shannon indexes of the F-F treatment were 29.56%, 35.78%, and 45.55% higher than those of the F-C treatment, respectively. Glomus was the dominant genus of AMF communities under all treatments, whereas Scutellospora showed a significant difference among the treatments (P<0.05). PCoA analysis showed that PC1 and PC2 together explained 29.99% and 22.40% of the difference in the AMF community composition, respectively. The correlation analysis showed that there was a significant negative correlation between Scutellospora and alkaline nitrogen (AN) and organic matter (SOM) (P<0.05), a significant positive correlation between Scutellospora and available potassium (AK) (P<0.05), and a significant positive correlation between Glomus and alkaline nitrogen (P<0.05). RDA analysis showed that AMF diversity (Shannon index) and Scutellospora were significantly and positively correlated with aggregate content >2 mm and 2-1 mm, respectively (P<0.05). Therefore, annual fallow and vetch rotation corn were conducive to improving the stability of soil aggregates and changing the composition of the AMF community. The research results provide a theoretical basis and reference for the annual rotation system to improve soil quality and implement a reasonable crop rotation and fallow pattern in southern China.


Assuntos
Glomeromycota , Micorrizas , Nitrogênio , Solo , Zea mays , Produção Agrícola
12.
Insects ; 14(8)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37623403

RESUMO

The application of green manure is crucial for achieving sustainable agriculture and animal husbandry, but pest management is often overlooked. Conducting a risk assessment for insect pests in green manure is essential. The beet webworm, Loxostege sticticalis, a polyphagous insect, is currently experiencing an outbreak in northern China, and represents a significant migratory pest. A two-sex life table and flight mill test approach was used to comprehensively evaluate the effects of three major legume green manure crops (Pisum sativam, Vicia sativa, and Vicia villosa) on the growth, development, fecundity, and flight ability of L. sticticalis in China. Our findings indicate that L. sticticalis cannot utilize V. villosa for generational development. L. sticticalis shows reduced performance on P. sativam and V. sativa compared to its suitable host Chenopodium album. However, both the population parameters (R0, r, λ, and T) and the population prediction results suggest that L. sticticalis can adapt to P. sativam and V. sativa. In the process of promoting green manure, careful consideration should be given to the selection of appropriate green manure varieties and the implementation of effective pest control measures during their planting. Our findings lay the groundwork for the promotion of green manure and implementation of an ecological management plan for L. sticticalis.

13.
Heliyon ; 9(7): e17828, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483775

RESUMO

The conventional crop production practices including intensive tillage and open field crop residue burning in world' largest rice-wheat system (RWS) are adversely affecting crop productivity besides deteriorating natural resources and ecosystems' sustainability. In order to improve system productivity, potassium (K) use efficiency and apparent K balance, adoption of conservation tillage in a RWS with residue management is considered highly effective. We therefore, studied the effect of wheat straw retention and green manure (GM) in rice (main plot treatment), and tillage and rice residue management in subsequent wheat (sub-plot treatments) on crop productivity, K use efficiency and its transformation amongst different fractions of variable solubility. These results revealed that rice straw retention along with GM significantly (p < 0.05) increased the rice yields by ∼5.3-6.7% and wheat yields by ∼10.2-16.9%, compared to the conventional tillage (CT) without GM. Green manuring during the intervening period (CTRW0+GM) significantly increased the rice grain K uptake by ∼36.2% than in plots with no-GM (CTRW0). However, it increased by ∼29.8% under CTRW25+GM, compared with CTRW25-GM treatment. As compared with CTRW0, CTRW0+GM significantly increased the reciprocal internal use efficiency of K of rice by 3.8 kg Mg-1 grain yield (∼29.5%). However, CTRW25+GM increased the RIUEK of rice by 3.3 kg Mg-1 grain yield (∼22.4%), compared with no-GM (CTRW25). Although, apparent K balance was net negative for CTRW25, ZTWR100 treatments, yet there was decreased K mining of 56-262 kg K ha-1 (∼11.9-61.2%) for CTRW25 and ZTWR100 over CTRW0 and ZTWR0. The increased crop yield, K uptake and K use efficiency were significantly related to K enrichment in water soluble K, exchangeable K, non-exchangeable-K, hydrochloric acid extractable-K, lattice-K and total K fractions by ∼1.3, 3.4, 18.6, 11.0 and 34.1%, respectively due to residue retention, compared with no residue. Therefore, conventional tillage with puddled transplanted rice (CTR) with wheat residue and green manure during intervening period (CTRW25+GM), and zero tillage wheat with rice residue retention (ZTWR100) were emerged as highly valuable technological options for mitigating soil degradation effects under intensive RWS for food grains in north-western India.

14.
Heliyon ; 9(6): e17294, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383197

RESUMO

The emergence of pests and diseases, including the maize streak virus, leaf blight, the African stem borer, and gray leaf spot, poses a persistent threat to maize production (Zea mays L. cv: DMR-ESR-Yellow) around the world. A field experiment was conducted at the School of Agriculture experimental site, Njala University, Sierra Leone, during a two-year period (2020-2021) to assess the effects of green manure on pest and disease incidence and severity as well as growth and yield parameters of maize. The experiment was laid out in a randomized complete block design (RCBD) with three replications and four treatments: Cal. 3 t.ha-1, Cal. 6 t.h-1, Pan. 3 t.h-1, Pan 6 t.ha-1 and a control plot amended with 200 kg ha-1 of N (urea) and NPK 15:15:15 ha-1 split application. The study showed that gray leaf spot damage was the most severe infection among all treatments. Therefore, the effects of the most severe disease and pest of maize in Sierra Leone can be minimized by applying green manure. Moreover, results reveal that Calopogonium- Pueraria mixture amended plots showed significant performance in the measured growth parameters viz. highest leaf number, large leaf area stem girth, superior plant height, best ear height (64.6-78.5 cm), higher cob yield (1.2-1.4 t.ha-1) ear (1.8-2.1 t.ha-1) and dry grain yield (0.5-0.7 ha-1). Panicum green manure results showed that prompt and adequate application, as well as decomposition of green manures, is imperative for the successful conservation and sustainability of maize farming systems. The findings of this research could improve the efficiency of green manure use in pest, disease, and crop management systems.

15.
Front Bioeng Biotechnol ; 11: 1156751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214304

RESUMO

Pesticides offer stakeholders cost-effective solutions to control weeds. Nevertheless, such active compounds can manifest as severe environmental pollutants when escaping from agroecosystems into surrounding natural ecosystems, driving the need to remediate them. We, hence, analyzed whether Mucuna pruriens can develop a potential phytoremediator for treating tebuthiuron (TBT) in soil with vinasse. We exposed M. pruriens to microenvironments containing tebuthiuron at 0.5, 1, 1.5, and 2 (standard dose) L ha-1 and vinasse at 75, 150 (industrial recommendation), and 300 m3·ha-1. Experimental units without organic compounds represented controls. We assessed M. pruriens for morphometrical features, such as plant height and stem diameter and shoot/root dry mass, over approximately 60 days. We obtained evidence for M. pruriens not effectively removing tebuthiuron from the terrestrial medium. Such a pesticide developed phytotoxicity, significantly limiting its germination and growth. The higher the dose, the more negatively the tebuthiuron impacted the plant. In addition, introducing vinasse into the system, irrespective of volume, intensified the damage to photosynthetic and non-photosynthetic structures. Equally important, its antagonist action further decreased the production and accumulation of biomass. As M. pruriens could not effectively extract tebuthiuron from the soil, it could allow neither Crotalaria juncea nor Lactuca sativa to grow on synthetic media containing residual pesticide. An atypical performance of such testing (tebuthiuron-sensitive) organisms over independent ecotoxicological bioassays validated inefficient phytoremediation. Hence, M. pruriens could not offer a functional remediative option to treat environmental pollution by tebuthiuron in agroecosystems where vinasse occurs, such as sugarcane-producing areas. Although M. pruriens considered a tebuthiuron phytoremediator as cited in the literature, satisfactory results did not occur in our research due to high concentrations of vinasse in the soil. Therefore, this information requires more specific studies about the influence of high concentrations of organic matter on M. pruriens productivity and phytoremediation performance.

16.
Chemosphere ; 329: 138604, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028730

RESUMO

The use of cover crops (CCs) in viticulture is threatened by the contamination of vineyard soils by copper (Cu). This study investigated the response of CCs to increased concentrations of Cu in soil as a way to assess their sensitivity to Cu and their Cu phytoextraction ability. Our first experiment used microplots to compare the effect of increasing soil Cu content from 90 to 204 mg kg-1 on the growth, Cu accumulation level, and elemental profile of six CC species (Brassicaceae, Fabaceae and Poaceae) commonly sown in vineyard inter-row. The second experiment quantified the amount of Cu exported by a mixture of CCs in vineyards with contrasted soil characteristics. Experiment 1 showed that increasing the soil Cu content from 90 to 204 mg kg-1 was detrimental to the growth of Brassicaceae and faba bean. The elemental composition of plant tissues was specific to each CC and almost no change in composition resulted from the increase in soil Cu content. Crimson clover was the most promising CC for Cu phytoextraction as it produced the most aboveground biomass, and, along with faba bean, accumulated the highest concentration of Cu in its shoots. Experiment 2 showed that the amount of Cu extracted by CCs depended on the availability of Cu in the topsoil and CC growth in the vineyard, and ranged from 25 to 166 g per hectare. Taken together, these results emphasize the fact that the use of CCs in vineyards may be jeopardised by the contamination of soils by Cu, and that the amount of Cu exported by CCs is not sufficiently high to offset the amount of Cu supplied by Cu-based fungicides. Recommendations are provided for maximizing the environmental benefits provided by CCs in Cu-contaminated vineyard soils.


Assuntos
Brassicaceae , Poluentes do Solo , Cobre/análise , Fazendas , Solo , Poluentes do Solo/análise , Produtos Agrícolas
17.
Front Plant Sci ; 14: 1107880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035066

RESUMO

Changing from conventional to organic farming might have fewer negative environmental impacts because of the avoidance of synthetic fertilizer and chemical pesticides. In this study, the economic viability and environmental and sustainability performance of the four dominant organic (rice-green manure rotation (RG), rice-duck co-culture (RD), rice-crayfish co-culture (RCF) and rice monoculture (RM)) and one conventional (rice monoculture (CRM)) rice production modes were evaluated in Jiangsu Province, China. Compared with the CRM mode, organic rice production increased economic benefits density and improved the economic benefit of crop land and irrigation water use. With the lowest total emergy input and the highest rice yield, the CRM mode showed the highest ecological efficiency in converting resources to total available energy content and nutrition density unit among the five rice production modes. However, the RCM mode showed higher environmental pressure and lower sustainability than the four organic modes due to the larger proportion of nonrenewable emergy input. The RM mode was the most uneconomic organic rice production mode with the highest cost input and the lowest product output but had relatively higher sustainability due to the higher proportion of renewable resources to total emergy inputs. Compared with the RM mode, the value-to-cost ratio, economic benefit density and benefit-cost ratio were increased in the RG, RD and RCF modes. Although the RD and RCF modes had higher efficiency in converting resources to total nutrition density units and monetary value, they imposed higher environmental pressure with a lower renewable fraction and emergy sustainability index than those in the RM mode. The RG mode had higher emergy utilization efficiency and the highest renewable fraction and emergy sustainability index among the four organic rice production modes. Considering the ecological and economic effects, the RG mode was conducive to improving the economic viability and sustainability of organic rice production.

18.
BMC Plant Biol ; 23(1): 69, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726076

RESUMO

BACKGROUND: Green manure (GM) is a crop commonly grown during fallow periods, which has been applied in agriculture as a strategy to regulate nutrient cycling, improve organic matter, and enhance soil microbial biodiversity, but to date, few studies have examined the effects of GM treatments on rhizosphere soil bacterial community and soil metabolites from continuous cropping peanut field. RESULTS: In this study, we found that the abundances of several functionally significant bacterial groups containing Actinobacteria, Acidobacteria, and genus Sphingomonas, which are associated with nitrogen cycling, were dramatically increased in GM-applied soils. Consistent with the bacterial community results, metabolomics analysis revealed a strong perturbation of nitrogen- or carbon-related metabolisms in GM-applied soils. The substantially up-regulated beneficial metabolites including sucrose, adenine, lysophosphatidylcholine (LPC), malic acid, and betaines in GM-applied soils may contribute to overcome continuous cropping obstacle. In contrast to peanut continuous cropping, planting winter wheat and oilseed rape in winter fallow period under continuous spring peanut production systems evidently improved the soil quality, concomitantly with raised peanut pod yield by 32.93% and 25.20%, in the 2020 season, respectively. CONCLUSIONS: GMs application is an effective strategy to overcome continuous cropping obstacle under continuous peanut production systems by improving nutrient cycling, soil metabolites, and rhizobacterial properties.


Assuntos
Arachis , Solo , Arachis/metabolismo , Esterco , Rizosfera , Microbiologia do Solo , Bactérias/metabolismo , Agricultura/métodos , Nitrogênio/metabolismo
19.
Heliyon ; 9(1): e12903, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36820165

RESUMO

Crop rotation has widely contributed to increasing farmland biodiversity as well as to improving soil carbon pools and microbial diversity. However, there is a weak understanding of the suitability of winter crop rotation intensification in double rice fields, especially rotation with various winter crops. For this task, a long-term field experiment based on one from 2012 was conducted with five winter crop systems for double rice: winter fallow (T0), winter milk vetch (T1), winter rape (T2), winter garlic (T3), winter rotation intensification with potato, milk vetch, and rape (T4). Parameters such as crop yield, soil carbon, nitrogen, and soil microorganism were measured. It was found that compared to winter fallow, winter milk vetch, rape, garlic, and crop rotation intensification practices increased the late rice yield by 2.5%, 2.3%, 4.5%, and 3.7%, respectively; winter garlic and crop rotation intensification also increased the early rice yield by 4.6% and 3.5%, respectively. This is associated with the promotion of rice tillering. At the same time, for winter crop rotation, compared to winter fallow, the soil organic carbon increased by 21%. With the input of diversified crop residues, winter crops were effective in soil carbon sequestration, improving soil microbial structure, and increasing soil microbial diversity. The Shannon diversity index of winter crops ranged from 9.75 to 9.91, while winter fallow was 9.38. The Simpson's diversity index of winter crops ranged from 0.997 to 0.998, while winter fallow was 0.996. In conclusion, winter crop practices, especially winter crop rotation intensification, can enhance soil health and sustainability in double rice fields through its positive feedback on crop yield, soil carbon sequestration, and microorganisms.

20.
Plants (Basel) ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679024

RESUMO

Planting a deep-rooted green manure (GM) (more than 1.0 m depth) greatly improves soil fertility and reduces the loss of nutrients. However, few studies have examined the response of soil nitrogen (N) distribution in the soil profile and subsoil N recovery to the long-term planting and incorporation of deep-rooted GM. Based on a 12-year (2009−2021) experiment of spring maize-winter GMs rotation in the North China Plain (NCP), this study investigated the effects of different GMs that were planted over the winter, including ryegrass (RrG, Lolium L.) (>1.0 m), Orychophragmus violaceus (OrV, Orychophragmus violaceus L.) (>0.8 m), and hairy vetch (VvR, Vicia villosa Roth.) (>1.0 m), on the spring maize yield, N distribution in the deep soil profile, N use efficiencies, functional gene abundances involving soil nitrification−denitrification processes and N2O production. Compared with the winter fallow, the maize yield significantly increased by 11.6% after 10 years of green manuring, and water storage in 0−200 cm soil profile significantly increased by 5.0−17.1% at maize seedling stage. The total N content in the soil layer at 0−90 cm increased by 15.8−19.7%, while the nitrate content in the deep soil layer (80−120 cm) decreased by 17.8−39.6%. Planting GM significantly increased the N recovery rate (10.4−32.7%) and fertilizer N partial productivity (4.6−13.3%). Additionally, the topsoil N functional genes (ammonia-oxidizing archaea amoA, ammonia-oxidizing bacterial amoA, nirS, nirK) significantly decreased without increasing N2O production potential. These results indicated that long-term planting of the deep-rooted GM effectively reduce the accumulation of nitrates in the deep soil and improve the crop yield and N use efficiencies, demonstrating a great value in green manuring to improve the fertility of the soil, increase the crop yield, and reduce the risk of N loss in NCP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...